A Look at Macros in Scheme
One of the features that sets Scheme apart as a programming language is its powerful macro system. In the same way that procedures allow you to reuse bits of code, macros allow you to reuse syntax. Macros and procedures can express many of the same things, but macros are particularly useful when you want to be careful about control flow and effects. Consider the following program.
(choose-arg 1 (factorial 5) (+ 1 2) (fibonacci 40))
Here, choose-arg
takes a number and some arguments. The whole
expression should evaluate to the argument selected by the number
argument. The example above should return 3. As a procedure,
choose-arg
might be written as follows:
(define choose-arg
(lambda (i . args)
(if (zero? i)
(car args)
(apply choose-arg (- i 1) (cdr args)))))
Using this definition (and appropriate definitions for factorial
and
fibonacci
), we see that our starting example returns 3 as
expected. Unfortunately, it takes a lot longer than we’d like:
(time (choose-arg 1 ...))
no collections
11167 ms elapsed cpu time
11168 ms elapsed real time
144 bytes allocated
That’s over 11 seconds to decide the answer is 3. What’s going on?
This takes so long because Scheme is an eager language, meaning it
must fully evaluate all procedure arguments before applying a
procedure. My version of Fibonacci takes exponential time, so
(fibonacci 40)
is somewhat nontrivial. What we’d really like is to
only evaluate the argument we actually selected with choose-arg
.
One way to do this is by using thunks. We just wrap all of the
arguments in lambdas with no arguments, and wrap an extra set of
parentheses around the call to choose-arg
to evaluate the thunk we
selected:
((choose-arg 1 (lambda () (factorial 5)) (lambda () (+ 1 2)) (lambda () (fibonacci 40))))
This performs much better:
(time ((choose-arg 1 ...)))
no collections
0 ms elapsed cpu time
0 ms elapsed real time
192 bytes allocated
Unfortunately, the program is now much harder to read. What we’d really like is to write our original program, but have Scheme execute it as if we had written something like this:
(if (= 1 0)
(factorial 5)
(if (= 1 1)
(+ 1 2)
(if (= 1 2)
(fibonacci 40))))
This is exactly what macros let us do. Macros let us define syntax
transformers, which take one part of your program as input and rewrite
it into a different program. As a macro, we could write choose-arg
like this:
(define-syntax choose-arg
(syntax-rules ()
((_ i e)
(if (= i 0) e))
((_ i e e* ...)
(if (= i 0)
e
(choose-arg (sub1 i) e* ...)))))
While a full explanation of syntax-rules
will have to wait for
another post, let’s take a minute to make sure we have some idea
what’s going on. We define macros with syntax-rules
by giving a set
of input and output patterns. Program fragments that match an input
pattern are replaced with the output pattern. Our choose-arg
macro
has two sets of patterns. The first one matches things like
(choose-arg 5 (+ 1 2))
and replaces it with (if (= 5 0) (+ 1
2))
. Notice that the i
and e
in the output pattern are replaced
with the code fragment from the input pattern. The second pattern is
similar, except that the e* ...
portion can match any number of
instances. The second one would take (choose-arg 1 'a 'b)
and
transform it into (if (= 1 0) 'a (choose-arg 1 'b))
. Macros keep
expanding, so the next time around, the application of choose-arg
would match the first pattern.
This version has the performance we would like, while also letting us
write the code as we would like. Still, performance is not the most
compelling reason to use macros. For any given problem, some languages
are better at expressing the solution than others. Rather than having
to choose the best language among many imperfect choices, macros let
the programmer write their code in a language they have created for
the program at hand. Additionally, macros make things easier for the
language implementor because they can focus on high quality
implementations for a small set of core forms and express the other
forms as macros that expand to these core forms. For example, just
lambda
and if
is enough to implement many more forms like let
,
let*
, or
, and
, cond
, etc.